Crowd Surge Analysis

Lotus Labs
8 min readFeb 16, 2022

The Challenge

Design a computer vision solution that can assess the crowd density and behavior in a venue and inform the operators of the typical points of crowd convergence and the current crowd situation.

The Approach

1. To estimate the number of people in a crowd.

2. To use the count to understand the crowd density of specific areas.

The first thing we have to do to approach the challenge is to break it down into simpler logical steps.

From here we quickly understand that the first step is to estimate the number of people and how it is distributed in a given camera frame. For this we use a Deep Learning Crowd Counting model that receives an image as input and outputs a matrix with the estimated number of persons per pixel of that image.

The second step is to determine the density of specific areas. Having the count of persons per pixel, we apply a grid to the output matrix and determine the density of each square by adding the value of all of its points. The new matrix shows us how many people are currently accumulated in each area. Knowing this, we can create rules to determine the status of a zone in terms of its capacity and alert the event organizers in real-time. We can also create a historical dataset of area occupancy to be studied and used in the preparation of other events.

--

--

Lotus Labs
Lotus Labs

Written by Lotus Labs

Transform your business into an AI-driven enterprise. We specialize in Machine learning for Retail, Insurance, and Healthcare industries. www.lotuslabs.ai

No responses yet